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Abstract. We give analytical expressions for the energy density of the massless scalar field excited
from an arbitrary initial state (including vacuum) due to the non-stationary Casimir effect in an
ideal one-dimensional cavity with vibrating walls, provided the frequency of vibrations is close to
a multiple frequency of the fundamental unperturbed field mode. The formation of sharp packets
is studied in detail. The influence of the initial state (vacuum, thermal and coherent) on the form
of the packets is demonstrated.

1. Introduction

Classical and quantum phenomena in cavities with moving boundaries have attracted the
attention of many researchers for a long time. The first solutions of the classical wave equation
in the one-dimensional (1D) space domain confined with boundaries moving with constant
velocities were obtained as far back as in [1, 2]; later they were rediscovered and generalized
in [3–5] (a detailed reference list can be found in [6]). Moore’s paper [7] seems to be the first
one devoted to the quantum aspects of the problem. This topic became particularly popular
in the last decade, being known now under the following names: the non-stationary Casimir
effect [8], the dynamical Casimir effect [9] or mirror- (motion) induced radiation [10, 11]).
For the most recent achievements in this area and references to other works see, e.g., [12–26].
One of the important theoretical results obtained over the last few years was the prediction of
the exponential growth of the energy of the field under the resonance conditions, when the wall
performs vibrations at a frequency which is a multiple of the unperturbed field eigenfrequency
[6, 27–32] (similar results for the classical fields and strings were obtained in [33–35]).

We address the problem of the energy density distribution inside a cavity with oscillating
boundaries. It was indicated in [28, 30, 31, 36, 37] (and earlier in [38] for the classical field)
that the main part of the energy is concentrated in several sharp peaks which move from one
boundary to another, becoming narrower and narrower over the course of time. However, until
now the evolution of these packets was studied within the framework of numerical calculations
only, and no explicit analytical expressions for the shape of the packets were found.

Recently, the analytical solutions to the problem of a one-dimensional ideal cavity with
resonantly vibrating boundaries were found [18]. These solutions enabled one to account
for the effects of detuning from a strict resonance (showing that no photons can be created
unless the dimensionless detuning is smaller than the dimensionless amplitude of the boundary
oscillations [18]), to study the effect of squeezing and to calculate the photon distribution
functions in all the cavity modes [24]. Here we use the solutions given in [18] to provide
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simple explicit formulae for the shape, height and width of the energy packets formed in the
vibrating cavity, for any initial state of the field, including as examples the vacuum, thermal
and coherent states.

2. Field operator in a 1D cavity with oscillating boundaries

We consider the model of a massless scalar field in a 1D cavity formed by two infinite ideal plates
whose positions are given by xleft ≡ 0 and xright = L(t), where L(t) is a given function (for
generalizations to a generic case of two moving boundaries see [14, 18, 37]). The field operator
Â(x, t) in the Heisenberg representation can be written in the form (hereafter c = h̄ = 1)

Â(x, t) =
∞∑
n=1

2√
n

[
b̂nψ

(n)(x, t) + h.c.
] [

b̂n, b̂
†
k

] = δnk. (2.1)

This operator must satisfy the wave equation

Âtt − Âxx = 0 (2.2)

and the boundary conditions [7]

Â(0, t) = Â(L(t), t) = 0. (2.3)

At t < 0, when the wall is assumed to be at rest, the mode function ψ(n)(x, t) in (2.1) has a
simple factorized form

ψ
(n)
0 (x, t) = e−iωnt sin (πnx/L0) ωn = nπ/L0. (2.4)

The normalization factor 2/
√
n in (2.1) is chosen in such a way that the energy of the field in

the stationary case can be represented as a sum of energies of independent mode oscillators
(see the next section).

There exist two approaches to the problem. The first one is usually related to the paper
by Moore [7], although it was used long before (in the context of the classical problems): see,
e.g., [1–4] and the reference list in [6]. In this approach, the mode function ψ(n)(x, t) is taken
in such a form that the wave equation (2.2) is satisfied automatically:

An(x, t) = {exp [−iπnR(t − x)] − exp [−iπnR(t + x)]} /(2i). (2.5)

Then the boundary conditions (2.3) result in the functional equation for the function R(ξ)

R(t + L(t)) − R(t − L(t)) = 2. (2.6)

For the oscillating boundary, the approximate solutions to equation (2.6) in the form of a
rather straightforward expansion over the small amplitude of oscillations were obtained in
[7, 39, 40]. However, these simple solutions cannot be used in the resonance case, due to
the presence of secular terms. Different non-trivial approximate solutions in this case were
found in [38, 41, 42]. They were generalized and specified in [28, 30, 36, 37]. However, the
structure of these solutions is rather complicated, so it was difficult to use them to obtain
explicit analytical expressions for the shape of the packets emerging in the cavity.

Another method [6, 27] is based on the expansion of each function ψ(n)(x, t) in a series
with respect to the instantaneous basis

ψ(n)(x, t) =
√

L(0)

L(t)

∞∑
k=1

Q
(n)
k (t) sin

[
πkx

L(t)

]
(2.7)
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so that the boundary conditions (2.3) are satisfied automatically. Then the wave equation (2.2)
can be replaced by an infinite set of coupled ordinary differential equations for the coefficients
Q

(n)
k (t)

Q̈
(n)
k + ω2

k(t)Q
(n)
k = 2

∞∑
j=1

gkj (t)Q̇
(n)
j +

∞∑
j=1

ġkj (t)Q
(n)
j + O (

g2
kj

)
(2.8)

where

ωk(t) = kπ/L(t) gkj = −gjk = (−1)k−j 2kjL̇(t)(
j 2 − k2

)
L(t)

.

In the case of the oscillating boundary

L(t) = L0 (1 + ε sin [pω1(1 + δ)t]) ω1 = πc/L0 p = 1, 2, . . . (2.9)

the set of equations (2.8) can be simplified under the resonance condition |δ| 
 1 and for the
small amplitude of oscillations |ε| 
 1, if one writes

Q
(n)
k (t) = ρ

(n)
k e−iωk(1+δ)t − ρ

(n)
−k eiωk(1+δ)t (2.10)

assuming the coefficients ρ
(n)
k (k = ±1,±2, . . .; n = 1, 2, . . .) to be slowly varying functions

of time, whose derivatives are proportional to the small parameter ε (the frequency ωk was
defined in equation (2.4)). Putting (2.10) into equation (2.8) and neglecting the second-order
terms like ρ̈

(n)
k ∼ ε2, one obtains, after averaging over fast oscillations with the multiple

frequencies of ω1, the equations [18]

d

dτ
ρ
(n)
k = σ

[
(k + p)ρ

(n)
k+p − (k − p)ρ

(n)
k−p

]
+2iγ kρ(n)

k (2.11)

where

γ ≡ δ/ε σ ≡ (−1)p τ ≡ 1
2εω1t. (2.12)

Looking for the functions Q
(n)
k (t) in the form (2.10) we neglect the terms proportional to the

higher harmonics exp [±irωkt], r = 2, 3, . . . . However, the amplitudes of these corrections
are very small, since they are of the order of ε (or less). The approximation (2.10) cannot be
justified for the values of time exceeding t2 ∼ (

ω1ε
2
)−1

, when the neglected terms of the order
of ε2 could become essential. However, for the realistic values ω1 ∼ 1010 s−1 and ε ∼ 10−8

corresponding to the possible experimental realizations [6] the limiting time t2 is of the order
of weeks.

Due to equation (2.11) and the initial conditions

ρ
(n)
k (0) = δkn (2.13)

the coefficients ρ(n)
k are different from zero if only the difference of the upper and lower indices

n − k is some multiple of the integer p. The set of equations (2.11) can be solved exactly in
terms of the Gauss hypergeometric functions (which can be reduced to the complete elliptic
integrals in some special cases) [18]. However, for our purposes here we do not need the
explicit form of these solutions. It is sufficient to know the set of generating functions of an
auxiliary variable z

R(k,j)(z, τ ) =
∞∑

l=−∞
ρ
(j+pk)
j+pl (τ ) zl j = 0, 1, . . . , p − 1 k = 0, 1, . . . . (2.14)
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Each of these functions satisfies the simple first-order partial differential equation

∂R(n,j)

∂τ
=

[
σ

(
1

z
− z

)
+ 2iγ

] (
j + pz

∂

∂z

)
R(n,j) (2.15)

which is an immediate consequence of equations (2.11) and (2.14). The solution to
equation (2.15) satisfying the initial condition R(n,j)(z, 0) = zn and the boundary condition
R(n,0)(0, τ ) = 0 reads [18]

R(k,j)(z, τ ) = z−j/p

[
zg(pτ) + σS(pτ)

g∗(pτ) + zσS(pτ)

]k+j/p

− δj0

[
σS(pτ)

g∗(pτ)

]k

(2.16)

where

S(x) = sinh(ax)/a g(x) = cosh(ax) + iγ S(x) a =
√

1 − γ 2. (2.17)

The consequences of equations (2.14) and (2.16) are the recurrence relations [18]

d

dτ
ρ(n)
m = n

{
σ

[
ρ(n−p)
m − ρ(n+p)

m

]
+ 2iγρ(n)

m

}
n � p ρ(0)

m ≡ 0 (2.18)

d

dτ
ρ(n)
m = n

{
σ
[
ρ
(p−n)∗
−m − ρ(p+n)

m

]
+ 2iγρ(n)

m

}
n = 1, 2, . . . , p − 1 (2.19)

which will also be used in the next sections. Formula (2.16) holds for any value of the detuning
parameter γ . If γ > 1, then one should replace the functions sinh(ax)/a and cosh(ax) by
their trigonometric counterparts sin(ãx)/ã and cos(ãx), where ã =

√
γ 2 − 1.

3. Energy density

Considering the systems with ideal moving boundaries one meets the problem of an ambiguity
in the definition of the energy and the notion of the ‘photons’. To avoid this difficulty we
suppose that after some interval of time T the wall comes back to its initial position L0 and no
longer moves. Then for t � T all ambiguities disappear, since the field operator assumes the
form analogous to (2.4)

Â(x, t) =
∞∑

m=1

2√
m

sin (πmx/L0)
[
âme−iωm(t+δT ) + h.c.

]
(3.1)

where new (‘out’) operators âm are related to the initial operators b̂n and b̂†
n by means of the

Bogoliubov canonical transformation

âm =
∞∑
n=1

√
m

n

[
b̂nρ

(n)
m − b̂†

nρ
(n)∗
−m

]
m = 1, 2, . . . (3.2)

which preserves [18] the commutation relations
[
ân, â

†
k

] = δnk . The argument of the constant

coefficients ρ
(n)
±m(τ) in (3.2) should be taken at the moment T , i.e. τ = τT ≡ 1

2εω1T . Due
to our assumption, the parameter T can assume only discrete values: T = Nπ/[p(1 + δ)]
with an integer N . Consequently, the possible values of the argument τ are discrete, as well:
τ = τ (N) = Nεπ/[2p(1 + δ)]. One should remember, however, that non-trivial physical
effects can only be observed for the values τ ∼ 1 (or larger), i.e. for N ∼ ε−1 � 1. In such a
case the minimal increment )τ = τ (N+1) − τ (N) ∼ ε is so small that τT can be considered as
a continuous variable (under the realistic conditions, ε � 10−8 [6]). For this reason, we omit
hereafter the subscript T , writing simply τ instead of τT or τ (N).
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The mean value of the energy density operator in one space dimension

Ŵ (x, t) = 1

8π

[(
∂Â/∂t

)2
+

(
∂Â/∂x

)2]
(3.3)

at t � T equals (hereafter we assume L0 = 1, i.e. ω1 = π )

W̃ (x, t) = π

∞∑
m,j=1

√
mj

{
cos[π(m + j)x] Re

[〈âmâj 〉e−iπ(m+j)t ′]
+ 1

2 cos[π(m − j)x]
[〈â†

mâj 〉eiπ(m−j)t ′ + 〈âmâ†
j 〉e−iπ(m−j)t ′]} (3.4)

where the quantum mechanical averaging 〈· · ·〉 is performed over the initial state of the field
(the Heisenberg picture) and t ′ ≡ t + δT . The last term in (3.4) results in the divergent sum
for m = j . Regularizing this divergence by means of the standard ‘point-split’ method [43]
we obtain (see the appendix) the known expression for the one-dimensional negative vacuum
Casimir energy [43–47]

W̃ (Cas) = −π/24

(
or − πh̄c

24L2
0

in the dimensional units

)
. (3.5)

Extracting this vacuum energy from W̃ we arrive at the expression

W ≡ W̃ − W̃ (Cas) = π

∞∑
m,j=1

√
mj Re

(〈âmâj 〉 cos[π(m + j)x] e−iπ(m+j)t ′

+〈â†
mâj 〉 cos[π(m − j)x] eiπ(m−j)t ′). (3.6)

The same expression (3.6) can be obtained if one calculates the mean value of the normally
ordered (with respect to the operators â†

n and ân) counterpart of the operator (3.3) (cf [28]).
Then the total energy (without the vacuum part) assumes the usual form

E =
∫ L0

0
W(x, t) dx =

∞∑
n=1

ωn

〈
â†
nân

〉
(3.7)

which justifies the choice of the normalization in (2.1) and (3.1).
Since the initial quantum state was defined with respect to the ‘in’ operators b̂†

n and b̂n,
we must express the ‘out’ operators â†

m and âm in terms of b̂†
n and b̂n by means of formula

(3.2). Thus we arrive at the expression containing a combination of the mean values 〈b̂nb̂k〉,
〈b̂†

nb̂
†
k〉, 〈b̂†

nb̂k〉 and 〈b̂nb̂†
k〉 calculated in the initial quantum state. For the initial vacuum state

defined according to the relations b̂n|0〉 = 0, n = 1, 2, . . . , the only non-zero mean values are
〈b̂nb̂†

k〉 = δnk . Then (3.6) is transformed into the triple sum

W0(x, t) = π

∞∑
n,m,j=1

mj

n
Re

{
cos[π(m − j)x] eiπ(m−j)t ′ρ

(n)
−mρ

(n)∗
−j

− cos[π(m + j)x] eiπ(m+j)t ′ρ
(n)
−mρ

(n)∗
j

}
. (3.8)

Evidently, W0(x, t) = 0 for t � 0. For an arbitrary initial state the energy density can be
written as a sum of the ‘vacuum’ and ‘non-vacuum’ contributions

W = W0 + W1 W1 = π

∞∑
n,k=1

1√
nk

Re
[〈b̂nb̂k〉B(nk) + 〈b̂†

nb̂k〉B̃(nk)
]

(3.9)
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where

B(nk) =
∞∑

m,j=1

mj
{

cos[π(m + j)x]
[
e−iπ(m+j)t ′ρ(n)

m ρ
(k)
j + eiπ(m+j)t ′ρ

(n)
−mρ

(k)
−j

]
− cos[π(m − j)x]

[
e−iπ(m−j)t ′ρ(n)

m ρ
(k)
−j + eiπ(m−j)t ′ρ

(n)
−mρ

(k)
j

]}
(3.10)

B̃(nk) =
∞∑

m,j=1

mj
{

cos[π(m − j)x]
[
e−iπ(m−j)t ′ρ

(n)∗
−m ρ

(k)
−j + eiπ(m−j)t ′ρ(n)∗

m ρ
(k)
j

]
− cos[π(m + j)x]

[
e−iπ(m+j)t ′ρ

(n)∗
−m ρ

(k)
j + eiπ(m+j)t ′ρ(n)∗

m ρ
(k)
−j

]}
. (3.11)

Making the change of the summation index j → −j in the first term of (3.8) we can write

W0(x, t) = −π Re
∞∑
n=1

∞∑
m=1

∞∑
j=−∞

mj

n
cos[π(m + j)x] eiπ(m+j)t ′ρ

(n)
−mρ

(n)∗
j .

Similarly, changing the indices m → −m or j → −j in (3.10) and (3.11) we can reduce four
sums with apparently different summands and the indices running from 1 to ∞ to the unified
sums whose two indices run from −∞ to ∞:

B(nk) =
∞∑

m,j=−∞
mj cos[π(m + j)x] e−iπ(m+j)t ′ρ(n)

m ρ
(k)
j

B̃(nk) =
∞∑

m,j=−∞
mj cos[π(m − j)x] eiπ(m−j)t ′ρ(n)∗

m ρ
(k)
j .

Now, replacing the cosine function by the sum of two imaginary exponentials we see that
W(x, t) is actually the sum of two identical functions of the lightcone variables:

W(x, t) = 1
2π [F(u; τ) + F(v; τ)] u = t ′ + x v = t ′ − x (3.12)

where

F = F0 +
∞∑

n,k=1

1√
nk

Re
[〈b̂nb̂k〉F (nk) + 〈b̂†

nb̂k〉F̃ (nk)
]

(3.13)

F0(u; τ) = − Re
∞∑
n=1

∞∑
m=1

∞∑
j=−∞

mj

n
eiπ(m+j)uρ

(n)
−m(τ)ρ

(n)∗
j (τ ) (3.14)

F (nk)(u; τ) =
∞∑

m=−∞

∞∑
j=−∞

mje−iπ(m+j)uρ(n)
m (τ )ρ

(k)
j (τ ) (3.15)

F̃ (nk)(u; τ) =
∞∑

m=−∞

∞∑
j=−∞

mjeiπ(m−j)uρ(n)∗
m (τ)ρ

(k)
j (τ ). (3.16)

The extra argument τ in the above expressions is introduced in order to emphasize that the
energy density depends not only on the value of the current time variable t (which must satisfy
the condition t > T ), but also on the moment of time T when the wall stopped moving. It is
worth mentioning that the variables t and τ are independent, as well as u and τ or v and τ .
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Evidently, the double sums (3.15) and (3.16) are factorized to the products of independent
sums over m and j :

F (nk)(u; τ) = G(n)(u; τ)G(k)(u; τ) F̃ (nk)(u; τ) = G(n)∗(u; τ)G(k)(u; τ)
G(n)(u; τ) =

∞∑
m=−∞

me−iπmuρ(n)
m (τ ) = i

π

∂

∂u

∞∑
m=−∞

e−iπmuρ(n)
m (τ ).

(3.17)

The last sum in (3.17) can be easily expressed in terms of the generating function (2.14) if one
writes n = j + kp, m = j + lp and z = exp(−iπpu). Thus we obtain

G(n)(u; τ) = nz [zg(pτ) + σS(pτ)]n/p−1

[g∗(pτ) + zσS(pτ)]n/p+1

∣∣∣∣
z=exp(−iπpu)

= nf 1/21n/p (3.18)

where

f (u; κ) = ∣∣g∗(pτ) + zσS(pτ)
∣∣−4 =

(
1 − κ2

)2[
1 + κ2 + 2σκ cos(pπu − ϕ)

]2 (3.19)

1 = zg(pτ) + σS(pτ)

g∗(pτ) + zσS(pτ)
= ei(2ϕ−πpu) 1 + σκ exp[i(πpu − ϕ)]

1 + σκ exp[i(ϕ − πpu)]
(3.20)

κ = S(pτ)√
1 + S2(pτ)

exp(iϕ) =
√

1 − γ 2κ2 + iγ κ. (3.21)

In the ‘vacuum’ contribution (3.14) we have some asymmetry between the indices m

and j , since m runs from 1 to ∞, whereas j runs from −∞ to ∞. This asymmetry can be
eliminated if one differentiates both sides of equation (3.14) with respect to the independent
variable τ at a fixed value of u and performs the summation over the superscript n with the aid
of the recurrence relations (2.18) and (2.19). It is easy to verify that all the summands with
n � p are cancelled, so the infinite series over n can be reduced to the finite sum from 1 to
(p − 1):

∂F0(u; τ)
∂τ

= −σ Re
p−1∑
n=1

∞∑
m=1

∞∑
j=−∞

mjeiπ(m+j)u
[
ρ
(n)
−m(τ)ρ

(p−n)

−j (τ ) + ρ(p−n)∗
m (τ)ρ

(n)∗
j (τ )

]
.

(3.22)

Making the change of summation indices m → −m, j → −j , n → p − n in the first product
inside the square brackets one can reduce two sums in the right-hand side of (3.22) to the single
series where both the indices m and j run from −∞ to ∞. Moreover, the sums over m and j

become completely independent, giving rise to the equation

∂F0(u; τ)
∂τ

= −σ Re
p−1∑
n=1

G(n)(u; τ)G(p−n)(u; τ) (3.23)

where G(n)(u; τ) is given by (3.17). Due to (3.18) the sum in the right-hand side of (3.23) is
reduced to the sum

∑p−1
n=1 n(p − n) = 1

6p(p
2 − 1). Introducing the variable η = exp(2apτ)

we obtain the explicit expression

∂F0(u; η)
∂η

= − (p2 − 1)a4η
[
η2(1 + α + β) + α − β − 1

]
12

[
η2(1 + α + β) − 2η(γ 2 + β) + 1 + β − α

]3 (3.24)

where α = σa cos(pπu) and β = σγ sin(pπu). Integrating (3.24) with the initial condition
F0 = 0 at τ = 0 (or η = 1) we arrive after some algebra at the simple expression

F0(u; κ) = B [f (u; κ) − 1] B ≡ (
p2 − 1

)
/24 (3.25)
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where the function f (u; κ) is given by (3.19). Finally, we obtain the following expression for
the function F(u; τ) defined by equation (3.12):

F = −B + f (u; τ)
{
B +

∞∑
n,k=1

√
nk Re

[〈b̂nb̂k〉1(n+k)/p + 〈b̂†
nb̂k〉1(k−n)/p

]}
. (3.26)

In the special case of the initial states whose density matrix is diagonal in the Fock basis, so
that 〈b̂†

nb̂k〉 = νnδnk and 〈b̂nb̂k〉 = 0 (for example, the Fock or thermal states; νn is the mean
number of quanta in the nth mode), the sum in (3.26) is proportional to the initial total energy
E0 in all the modes (above the Casimir level):

F (diag)(u; τ) = −B + f (u; τ) [B + N0] N0 =
∞∑
n=1

nνn = E0/π. (3.27)

The total energy at τ � 0 is obtained by integrating the density W(x) (3.12) over x. The
contribution of the vacuum (function F0 in (3.13)) and ‘diagonal’ terms (given by the partial
sum in (3.13) over n = k) can be calculated with the aid of the formula∫ π

0

dx

(a + b cos x)2
= πa(

a2 − b2
)1/2

which is a simple consequence of the integrals given in [48]. To find the contribution of ‘non-
diagonal’ terms (n �= k) it is convenient to replace the integration over x by the integration
in the complex z-plane (z = exp[−iπpu] or z = exp[−iπpv]) over the circle |z| = 1. One
can check that this circle is passed p times when x goes from 0 to 1 (if one takes into account
both the ‘u’- and ‘v’-contributions). It turns out that the integrals of the ‘non-diagonal’ terms
are different from zero provided the corresponding integrands in the z-plane have simple poles
inside the circle |z| = 1. This happens only when k + n = p in the first term inside the
square brackets in (3.26) and k − n = p in the second term inside the same brackets. This
fact becomes clear if one looks in figure 1, which illustrates the principal difference in the
behaviour of the function

Kµ
p (x) = Re

(
f (u)[1(u)]µ/p + f (v)[1(v)]µ/p

)
(3.28)

for µ = p and µ �= p. It is obvious that the integral of the function K
µ
p (x) over the interval

0 < x < 1 equals zero if µ �= p (we have chosen the values µ = 5 and p = 2 to give an
example).

Finally, we obtain exactly the same expression which was found in a different way in [18]:

E(τ ) = E0 + 2S2(pτ)
[E0 + πB + 1

2γ σ Im(G)] − 1
2σS(2pτ)Re(G) (3.29)

where

G = 2π
∞∑
n=1

√
n(n + p)〈b̂†

nb̂n+p〉 + π

p−1∑
n=1

√
n(p − n)〈b̂nb̂p−n〉. (3.30)

4. Packet formation

Now let us analyse the expressions for the energy density obtained in section 3. For the
initial vacuum state we see immediately from equations (3.19) and (3.25) that in the generic
case the function W0(x, t) with the fixed value of the ‘fast time’ t has p peaks in the interval
0 � x � 1, whose positions are determined by the equations σ cos(pπu − ϕ) = −1 and
σ cos(pπv − ϕ) = −1 (see figure 2). Obviously, for t > T the energy density is a periodic
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Figure 1. The functionsK2
2 (x) (broken curve) andK5

2 (x)

(full curve) defined by equation (3.28) for ϕ = 0 and
κ = 0.9. The fractional parts of the ‘fast time’ t are
chosen as follows: [t] = 0.3 for K2

2 and [t] = 0.1 for
K5

2 (since the integral part of t is not important, we omit
it in all the figures).

Figure 2. The energy density for the initial vacuum state
in the case of the strict resonance γ = 0, for [t] = 0.3 and
κ = 0.9; p = 2 (full curve) and p = 3 (broken curve).

function of the time variable t , with the period )t = 1 if p is an even number and )t = 2 if p
is odd. For this reason, in all the figures we give only the fractional part [t] of t and omit the
inessential integral part (which is very large in fact: for the maximal possible value ε ∼ 10−8

[6] we have t ∼ 108 if τ ∼ 1).
For the even values of the resonance multiplicity p we have p/2 peaks moving (with the

speed of light) in the positive direction and p/2 peaks moving in the negative direction. If p
is odd, then the numbers of peaks of each kind differ by 1. All the peaks have the same height

W(vac)
max = 2πBκ/(κ − 1)2 = 1

2πB (
e4pτ − 1

)
(4.1)

(in this section the expressions containing τ are related to the special case of the strict resonance
γ = 0), except for some distinguished instants of time when two peaks moving in the opposite
directions merge, forming a peak with double the height.

If κ → 1 (i.e. τ > 1 and γ < 1), then the energy density can be approximated in the
vicinity of each peak by the Lorentz-like distribution

W(vac)(δx) = W(vac)
max[

1 +
(
2δx/)1/4

)2 ]2 )1/4 = 2

pπ

1 − κ√
κ

≈ 4

pπ
e−2pτ (4.2)

where the width )1/4 of each peak is defined as the double distance between the position of the
maximum and the point where the energy density decreases four times. One can also introduce
the ‘energy width’ of each peak by means of the relation Wmax)E = E(τ )/p. For κ → 1 we
obtain )E ≈ (1 − κ)/(2πp) ≈ (πp)−1e−2pτ .

Except for narrow regions of length )+ ≈ (πp)−1
√

1 − κ ≈ √
2(πp)−1e−pτ nearby

the peaks the ‘dynamical’ energy density is less than its initial vacuum value, in agreement
with the results of [28, 30, 36, 37] obtained within the framework of different approaches. The
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Figure 3. The energy density for the initial vacuum (full
curve) and thermal (broken curve) states, for γ = 0,
p = 2, [t] = 0.3 and κ = 0.9. The initial total energy of
the thermal state is E0 = π .

Figure 4. The ‘fine structure’ of the energy density
peak in the case when initially the first mode was in
the coherent state with |α| = 1 but different values
of the phase ψ , for γ = 0, p = 2, [t] = 0.3 and
κ = 0.9. The curves are ordered according to the increase
of the maximal heights as follows: ψ = 0 (full curve),
ψ = 9π/10 (chain curve), ψ = π/4 (dotted curve),
ψ = π/2 (broken curve).

minimum values of W0 far off the peaks are given by (taking into account the contributions of
both the functions F0(u) and F0(v))

Wmin = −4πB κ

(κ + 1)2
= πB (

e−4pτ − 1
)
. (4.3)

If κ → 1, Wmin → −π
(
p2 − 1

)
/24. Adding to this expression the initial Casimir energy

(3.5) we obtain the total asymptotical minimum value (cf [28])

W̃
(as)
min = −πp2/24. (4.4)

For an arbitrary initial state the energy density has, besides the ‘vacuum’ part, the additional
terms given in equation (3.26). Since these terms are proportional to the same functionsf (u; κ)
or f (v; κ) which determine the structure of the ‘vacuum’ part, the positions of the peaks are
not changed (remember that |1| = 1). For the initial states with diagonal density matrices
in the Fock basis (in particular, for the thermal states) all the peaks still have equal heights,
increased by the quantity )Wmax = 1

2E0(1 + κ)2/(1 − κ)2, compared with the vacuum case.
However, the asymptotic minimal value of the energy density at κ → 1 does not depend on the
initial state, as it is given by formula (4.4) in all cases. Figure 3 shows in detail the behaviour
of the energy density in the regions where it is negative, for the vacuum and thermal initial
states.

If the initial density matrix in the Fock basis has non-zero off-diagonal elements (as
happens, in particular, for any pure state different from the Fock one, e.g. for the coherent
states), different terms in the sum (3.26) can interfere. Consequently, the peaks acquire some
kind of ‘fine structure’. For example, if only the first mode was excited initially in the coherent
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Figure 5. The energy density profiles for two different
initial states with the same value of the total energy E0 =
2π . The broken curve with two differently deformed
peaks corresponds to the case when two first modes
were in the coherent states with the same amplitude
|α1| = |α2| = 1, but different phases ψ1 = 0, ψ2 = π/4.
The full curve with two identical peaks corresponds to
the initial thermal state. In both cases γ = 0, p = 2
and κ = 0.9. In order to separate the peaks we choose
[t] = 0.3 for the coherent states, but [t] = 0.1 for the
thermal state.

Figure 6. The energy density in the case when initially
the first mode was in the coherent state with |α| = 1 and
ψ = π/4, for γ = 0, p = 5, [t] = 0.3 and κ = 0.9.

state |α〉, α = |α| exp(iψ), then for p = 2 and γ = 0 (the strict resonance) we have

)W ≡ W − W(vac) = π |α|2
(
1 − κ2

)2
[κ sin(z + ψ) + sin(z − ψ)]2[

(1 − κ)2 + 4κ sin2 z
]3

where z ≡ π (u − u∗) and u∗ is the position of the ‘vacuum’ peak determined above. If
ψ = π/2, then we have the high maximum )Wmax

π/2 = π |α|2(1 + κ)2/(1 − κ)2 at z = 0.
However, if ψ = 0, then instead of a maximum we have the minimum )W = 0 at the
same point z = 0, and the peak is split in two symmetric humps with equal maximal heights
)Wmax

0 = (
[1 + κ]2/27κ

)
)Wmax

π/2 located at the points sin z = ±(1 − κ)/
√

8κ . In the
intermediate case 0 < ψ < π/2 asymmetric forms of the peaks are observed (see figure 4).

If p > 2 or several modes were excited initially, the interference between different terms
in (3.26) can result in different heights of the peaks and more complicated ‘fine structures’
(provided 〈b̂nb̂k〉 �= 0 for some n and k) (see figures 5 and 6).

If the detuning γ is different from zero, then some deformations of the form of peaks
are observed, although the maximal heights are still of the same order of magnitude as in the
case γ = 0, as far as γ � 1 (see figure 7). However, if the detuning exceeds the critical
value γ = 1, the energy becomes an oscillating function of the ‘slow time’ τ , the amplitude of
oscillations being proportional approximately to

(
γ 2 − 1

)−1
[18, 24]. This situation is shown

in figure 8. The peaks become rather wide and low, since the parameter κ is limited by the
inequality κ � γ−1 if γ > 1.
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Figure 7. The ‘fine structure’ of the energy density peak
in the ‘critical resonance’ case γ = 1, when initially the
first mode was in the coherent state with |α| = 1 but
different values of the phase ψ , for p = 2, [t ′] = 0.3
and κ = 0.9. The curves are ordered according to the
increase of the maximal heights as follows: ψ = 9π/10
(chain curve), ψ = 0 (full curve), ψ = π/2 (broken
curve), ψ = π/4 (dotted curve).

Figure 8. The energy density in the ‘off-resonance’ case
γ = 2, when initially the first mode was in the coherent
state with |α| = 1 but different values of the phase ψ = 0
(full curve) and ψ = π/2 (chain curve with the highest
maximal value), for p = 2, [t ′] = 0.3 and κ = 0.4. The
broken curve with a smooth maximum in the centre gives
the initial energy density distribution (corresponding to
the value κ = 0).

5. Discussion

Let us summarize the main results of the paper. We have found simple explicit analytical
expressions describing the energy density distribution of the field inside an ideal 1D cavity
whose walls performed harmonic vibrations at some (quasi)resonance frequency, after the
walls finally came to rest. These expressions show that the energy density is concentrated in
the form of p sharp peaks (either in space for a fixed time moment, or in time at the fixed point
inside the cavity), provided the resonance condition γ � 1 is fulfilled, where γ is the ratio
of the dimensionless detuning δ to the dimensionless amplitude of the wall oscillations ε and
p is the multiplicity of the resonance with respect to the fundamental field eigenfrequency.
These peaks move with the speed of light from one wall to another. The shapes of the peaks
are sensitive to the initial state of the field: rather simple symmetric Lorentzian-like profiles
are observed for the vacuum or thermal states, whereas for other states we have asymmetric
peaks possessing some kind of ‘fine structure’.

Since in the single space dimension the components of the energy–momentum tensor T00

and T11 are given by similar expressions, the force acting on each wall has the same time
dependence as the energy density at the points x = 0 and 1. For most of the time during the
period of field oscillations 2L0/c (where L0 is the distance between the walls at rest) this force
is negative, being less than the static Casimir force, with the maximal amplification coefficient
p2. However, the average value of the force over the period is positive due to the creation of
real photons inside the cavity.

If the walls possess some small transmission coefficient, then a small part of the radiation
accumulated inside the cavity can leave it. In this case one could observe sharp pulses of
radiation outside the cavity [16], whose amplitudes must be proportional to the heights of the
peaks inside the cavity multiplied by the small transmission coefficient. The intensity of these
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pulses can be significantly increased, if the initial state is different from vacuum and possesses
sufficient energy, like thermal states [16, 26] or coherent states. However, to describe the form
of the pulses exactly it is necessary to develop a more general theory which would take into
account the boundary conditions corresponding to the partially transmitting walls (because the
non-zero transmission coefficient can change the pulse shape significantly, just as the non-zero
detuning deformed the form of packets in the examples considered in section 4).

The total energy E of the field depends on the parameter τ = 1
2εω1T = πεN , where

N is the number of full oscillations performed by the wall. Due to equation (3.29), the
dynamical contribution to the energy exceeds the absolute value of the static Casimir energy if
τ > τc ≈ [

2p2
(
p2 − 1

)]−1/2 ≈ (
p2

√
2
)−1

, and it grows exponentially if pτ > 1. However,
the level E > h̄ω1 can be achieved only after a great number of oscillations, since the crucial
parameter ε is very small even in the most optimistic situations. It was shown in [6, 32]
that the critical value of this parameter equals εmax ∼ (vs/2πc)ξmax ∼ 10−8, otherwise the
vibrating wall will be destroyed because of the immense internal mechanical stresses (here vs
is the sound velocity inside the wall and ξmax ∼ 10−2 is the maximal possible non-destructive
deformation). The maximal possible velocity of the surface is [6] vmax ∼ ξmaxvs ∼ 50 m s−1.
Note that vmax and εmax do not depend on the fundamental eigenfrequency ω1.

Evidently, the increase of the energy cannot be unlimited even when N → ∞, due to at
least two circumstances. The first one is that our solutions hold provided N < ε−2. For larger
values of N the nonlinear effects will destroy the effective intermode interaction. These effects,
however, are quite unimportant in realistic situations, due to the smallness of the parameter
ε (remember the discussion in section 2). Much more important are the limitations due to
inevitable losses in the cavity walls. To overcome these losses one needs a cavity with the
quality factor Q > ε−1

max > 108. The unsolved problem is how to excite the vibrations of the
wall surface at high frequencies of the order of 1–10 GHz (corresponding to a cavity length of
the order of centimetres), not speaking of the optical frequencies, required for microcavities
with dimension L0 ∼ 1 µm.

One of the reasons for the studies on the dynamical Casimir effect over the last few years has
been Schwinger’s hypothesis [9, 49], which could explain the sonoluminescence phenomenon,
i.e. the emission of bright short pulses of visible light from gas bubbles in water, when the
bubbles pulsate due to the pressure oscillations in a strong standing acoustic wave (see, e.g.,
[50, 51] for a review and references). Although our results, obtained in the framework of a
simplified one-dimensional model, cannot be applied directly to the analysis of this problem,
they are not in favour of Schwinger’s hypothesis. The main difficulty is connected with the
quite different time scales of the phenomena. The accumulation of the ‘dynamic Casimir
energy’ is a very slow process, which needs a great number of wall oscillations, whereas
the sonoluminescence pulses (containing up to 107 photons) have a duration of the order
of picoseconds. Moreover, the wall oscillations must be in extremely fine-tuned resonance
with the field eigenfrequencies, since the detuning δ > ε completely destroys the energy
growth [18]. In particular, if the frequency of the wall oscillations ωwall is much less than the
minimal field eigenfrequency ω1, then the field variation is adiabatic, and the mean number
of photons created is proportional to [6] ε2 (ωwall/ω1)

4 
 1. These features survive in the
three-dimensional model, too [17]. It is difficult to believe that the very specific conditions
described above could arise naturally in the sonoluminescence case (see also the discussion in
[52]).

Actually, the main obstacle to producing the ‘Casimir light’ is the very low ratio of the wall
velocity to the speed of light in possible laboratory experiments. If the velocity of the boundary
were of the order of c, then a sufficient number of photons could be created from the vacuum
practically for any law of motion. For the non-relativistic velocities the only possibility is
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to accumulate the effect gradually under the resonance conditions. Nonetheless, one cannot
exclude that the experimental situation could be improved in the case of using some kinds of
‘effective mirrors’, e.g. layers made from an electron–hole plasma, as was suggested in [53].
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Appendix. Renormalization of the vacuum energy

Due to the commutation relations
[
âm, â

†
j

] = δmj the series (3.4) contains the vacuum divergent
‘diagonal’ (m = j ) part

W̃ (vac) = (π/2)
∞∑

m=1

m exp(−iπmt ′ + iπmt ′). (A.1)

The recipe of how to regularize this divergence was given in [43]. One should write the first
term in the argument of the exponential in (A.1) as it stands, but replace t ′ in the second term
by t ′ + iη, η > 0 (the ‘point-splitting method’). Then the sum becomes convergent, giving

W̃ (vac)(η) = (π/2)
∞∑

m=1

me−mπη = (π/8) [sinh(πη/2)]−2 .

The Taylor expansion of this function reads W̃ (vac)(η) = (2πη2)−1−π/24+O(η2). According
to [43], one should remove the divergent term (2πη2)−1 and after that proceed to the limit
η → 0. This limit value is exactly the Casimir energy density (3.5), which does not depend
on the coordinate x in the case involved.
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[34] Dittrich J, Duclos P and Sěba P 1994 Phys. Rev. E 49 3535
[35] Dittrich J, Duclos P and Gonzalez N 1998 Rev. Math. Phys. 10 925
[36] Wu Y, Chan K W, Chu M C and Leung P T 1999 Phys. Rev. A 59 1662
[37] Dalvit D A R and Mazzitelli F D 1999 Phys. Rev. A 59 3049
[38] Vesnitskii A I 1971 Izvestiya VUZ–Radiofizika 14 1538 (Engl. transl. Sov. Phys.–Radiophys. Quantum Electron.)
[39] Vesnitskii A I 1971 Izvestiya VUZ–Radiofizika 14 1432 (Engl. transl. Sov. Phys.–Radiophys. Quantum Electron.)
[40] Dodonov V V, Klimov A B and Man’ko V I 1990 Phys. Lett. A 149 225
[41] Dodonov V V and Klimov A B 1992 Phys. Lett. A 167 309
[42] Dodonov V V, Klimov A B and Nikonov D E 1993 J. Math. Phys. 34 2742
[43] Fulling S A and Davies P C W 1976 Proc. R. Soc. A 348 393
[44] Casimir H B G 1948 Proc. Kon. Ned. Wet. 51 793
[45] Plunien G, Müller B and Greiner W 1986 Phys. Rep. 134 87
[46] Milonni P W 1994 Quantum Vacuum (Boston, MA: Academic)
[47] Mostepanenko V M and Trunov N N 1997 The Casimir Effect and its Applications (Oxford: Clarendon)
[48] Gradshtein I S and Ryzhik I M 1994 Tables of Integrals, Series and Products (New York: Academic)
[49] Eberlein C 1996 Phys. Rev. A 53 2772
[50] Cheeke J D N 1997 Can. J. Phys. 75 77
[51] Lamoreaux S K 1999 Am. J. Phys. 67 850
[52] Bordag M (ed) 1999 The Casimir effect fifty years later Proc. 4th Workshop on Quantum Field Theory under

the Influence of External Conditions (Leipzig, 14–18 September 1998) (Singapore: World Scientific)
[53] Lozovik Yu E, Tsvetus V G and Vinogradov E A 1995 Phys. Scr. 52 184


